Microvesicles from Human Adipose Tissue-Derived Mesenchymal Stem Cells as a New Protective Strategy in Osteoarthritic Chondrocytes

来自人类脂肪组织衍生的间充质干细胞的微泡作为骨关节炎软骨细胞的新保护策略

阅读:6
作者:Miguel Tofiño-Vian, Maria Isabel Guillén, María Dolores Pérez Del Caz, Antonio Silvestre, María José Alcaraz

Aims

Chronic inflammation contributes to cartilage degeneration during the progression of osteoarthritis (OA). Adipose tissue-derived mesenchymal stem cells (AD-MSC) show great potential to treat inflammatory and degradative processes in OA and have demonstrated paracrine effects in chondrocytes. In the present work, we have isolated and characterized the extracellular vesicles from human AD-MSC to investigate their role in the chondroprotective actions of these cells.

Background/aims

Chronic inflammation contributes to cartilage degeneration during the progression of osteoarthritis (OA). Adipose tissue-derived mesenchymal stem cells (AD-MSC) show great potential to treat inflammatory and degradative processes in OA and have demonstrated paracrine effects in chondrocytes. In the present work, we have isolated and characterized the extracellular vesicles from human AD-MSC to investigate their role in the chondroprotective actions of these cells.

Conclusions

Our data support the interest of AD-MSC extracellular vesicles to develop new therapeutic approaches in joint conditions.

Methods

AD-MSC were isolated by collagenase treatment from adipose tissue from healthy individuals subjected to abdominal lipectomy surgery. Microvesicles and exosomes were obtained from conditioned medium by filtration and differential centrifugation. Chondrocytes from OA patients were used in primary culture and stimulated with 10 ng/ml interleukin(IL)-1β in the presence or absence of AD-MSC microvesicles, exosomes or conditioned medium. Protein expression was investigated by ELISA and immunofluorescence, transcription factor-DNA binding by ELISA, gene expression by real-time PCR, prostaglandin E2 (PGE2) by radioimmunoassay, and matrix metalloproteinase (MMP) activity and nitric oxide (NO) production by fluorometry.

Results

In OA chondrocytes stimulated with IL-1β, microvesicles and exosomes reduced the production of inflammatory mediators tumor necrosis factor-α, IL-6, PGE2 and NO. The downregulation of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 would lead to the decreased PGE2 production while the effect on NO could depend on the reduction of inducible nitric oxide synthase expression. Treatment of OA chondrocytes with extracellular vesicles also decreased the release of MMP activity and MMP-13 expression whereas the production of the anti-inflammatory cytokine IL-10 and the expression of collagen II were significantly enhanced. The reduction of inflammatory and catabolic mediators could be the consequence of a lower activation of nuclear factor-κB and activator protein-1. The upregulation of annexin A1 specially in MV may contribute to the anti-inflammatory and chondroprotective effects of AD-MSC. Conclusions: Our data support the interest of AD-MSC extracellular vesicles to develop new therapeutic approaches in joint conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。