Optimal precursor ion selection for LC-MALDI MS/MS

LC-MALDI MS/MS 的最佳前体离子选择

阅读:7
作者:Alexandra Zerck, Eckhard Nordhoff, Hans Lehrach, Knut Reinert

Background

Liquid chromatography mass spectrometry (LC-MS) maps in shotgun proteomics are often too complex to select every detected peptide signal for fragmentation by tandem mass spectrometry (MS/MS). Standard

Conclusions

We present three approaches to precursor ion selection with LC-MALDI MS/MS. Using a well-defined protein standard and a complex human cell lysate, we demonstrate that our methods outperform standard approaches. Our algorithms are implemented as part of OpenMS and are available under http://www.openms.de.

Results

We present two algorithms for inclusion list creation that formulate precursor ion selection as an optimization problem. Given an LC-MS map, the first approach maximizes the number of selected precursors given constraints such as a limited number of acquisitions per RT fraction. Second, we introduce a protein sequence-based inclusion list that can be used to monitor proteins of interest. Given only the protein sequences, we create an inclusion list that optimally covers the whole protein set. Additionally, we propose an iterative precursor ion selection that aims at reducing the redundancy obtained with data dependent LC-MS/MS. We overcome the risk of erroneous assignments by including methods for retention time and proteotypicity predictions. We show that our method identifies a set of proteins requiring fewer precursors than standard approaches. Thus, it is well suited for precursor ion selection in experiments with limited sample amount or analysis time. Conclusions: We present three approaches to precursor ion selection with LC-MALDI MS/MS. Using a well-defined protein standard and a complex human cell lysate, we demonstrate that our methods outperform standard approaches. Our algorithms are implemented as part of OpenMS and are available under http://www.openms.de.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。