Protein Kinase Activity of Phytochrome A Positively Correlates With Photoresponses in Arabidopsis

拟南芥中光敏色素 A 的蛋白激酶活性与光响应呈正相关

阅读:6
作者:Quyen T N Hoang, Jae-Yong Cho, Da-Min Choi, Ah-Young Shin, Jin A Kim, Yun-Jeong Han, Jeong-Il Kim

Abstract

Plant phytochromes are known as autophosphorylating serine/threonine protein kinases. However, the functional importance of their kinase activity is not fully elucidated. Previously, the kinase activity is shown to be necessary for the function of Avena sativa phytochrome A (AsphyA) using transgenic plants with mutants displaying reduced kinase activity, such as K411L and T418D. In this study, we isolated and analyzed two AsphyA mutants, K411R and T418V, that showed increased kinase activity. Transgenic phyA-201 plants with these mutants showed hypersensitive responses to far-red (FR) light, such as shorter hypocotyls and more expanded cotyledons than those of control plant (i.e., transgenic phyA-201 plant with wild-type AsphyA). Contrary to the mutants with reduced kinase activity, these mutants accelerated FR-induced phosphorylation and subsequent degradation of phytochrome-interacting factor 3 (PIF3) in Arabidopsis. Moreover, elongated hypocotyl 5 (HY5), a critical positive regulator of photoresponses in plants, accumulated in higher amounts in the transgenic plants under FR light than in the control plant. In addition, PIF1 degradation was accelerated in the transgenic plants. Consequently, the transgenic plants exhibit higher germination frequencies than the control plant. Collectively, our results demonstrate that the AsphyA mutants with increased kinase activity are hyperactive in plants, supporting a positive relationship between the kinase activity of phytochromes and photoresponses in plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。