Targeted depletion of BTF3a in macrophages activates autophagic pathway to eliminate Mycobacterium tuberculosis

巨噬细胞中 BTF3a 的靶向消耗可激活自噬途径以消除结核分枝杆菌

阅读:5
作者:Kavita Rawat, Swetarka Das, Budai S Vivek Vinod, Umeshkumar Vekariya, Tanu Garg, Arunava Dasgupta, Raj Kamal Tripathi

Aims

β casein fragment peptide (54-59) downregulates Basic Transcription factor 3a (BTF3a) in macrophages and exhibits enhanced clearance of M. bovis BCG and several other intracellular pathogens. However, the direct effect of BTF3a downregulation on Mycobacterium tuberculosis (Mtb) survival and the probable pathways involved have not yet been studied. Therefore, the present study was undertaken to deduce the antimycobacterial significance of BTF3a in human macrophages. Main

Methods

CRISPR/Cas 9 gRNA was designed to downregulate BTF3a in THP1 derived macrophages. Fold change in BTF3a, p62 and Lamp 1 expression was evaluated through immune blot analysis. CFU assay was done to enumerate the intracellular burden of Mtb H37Rv. LC3B-II turnover and Lamp 1 expression was checked through immunoblotting and also visualized through confocal microscopy. Colocalization of Mtb H37Rv with LC3B, Lysotracker and Rab 7 was visualized through confocal microscopy. Key findings: The current study identifies BTF3a as a critical host factor assisting intracellular survival of Mtb. In THP1 derived macrophages, infection with Mtb H37Rv resulted in upregulation of BTF3a and targeted depletion of BTF3a resulted in augmented Mtb clearance. Furthermore, BTF3a knockdown demonstrated increased autophagy flux and ameliorated the lysosomal targeting of Mtb containing autophagosomes for lysosomal degradation. Significance: Deep understanding of macrophage-Mtb interactions and their roles in the pathogenesis can offer exciting new therapeutic targets for alternative host-specific adjunct therapies in tuberculosis treatment. The present study highlights a novel and significant role of BTF3a in curbing the intracellular survival of Mtb through modulation of autophagy and lysosome biogenesis.

Significance

Deep understanding of macrophage-Mtb interactions and their roles in the pathogenesis can offer exciting new therapeutic targets for alternative host-specific adjunct therapies in tuberculosis treatment. The present study highlights a novel and significant role of BTF3a in curbing the intracellular survival of Mtb through modulation of autophagy and lysosome biogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。