Age-dependent cerebral vasodilation induced by volatile anesthetics is mediated by NG2+ vascular mural cells

挥发性麻醉药引起的年龄依赖性脑血管扩张是由 NG2+ 血管壁细胞介导的

阅读:2
作者:Hang Zhou #, Viola Neudecker #, Jose F Perez-Zoghbi #, Ansgar M Brambrink, Guang Yang

Abstract

Anesthesia can influence cerebral blood flow by altering vessel diameter. Using in vivo two-photon imaging, we examined the effects of volatile anesthetics, sevoflurane and isoflurane, on vessel diameter in young and adult mice. Our results show that these anesthetics induce robust dilation of cortical arterioles and arteriole-proximate capillaries in adult mice, with milder effects in juveniles and no dilation in infants. This anesthesia-induced vasodilation correlates with decreased cytosolic Ca2+ levels in NG2+ vascular mural cells. Optogenetic manipulation of these cells bidirectionally regulates vessel diameter, and their ablation abolishes the vasodilatory response to anesthetics. In immature brains, NG2+ mural cells are fewer in number and express lower levels of Kir6.1, a subunit of ATP-sensitive potassium channels. This likely contributes to the age-dependent differences in vasodilation, as Kir6.1 activation promotes, while its inhibition reduces, anesthesia-induced vasodilation. These findings highlight the essential role of NG2+ mural cells in mediating anesthesia-induced cerebral vasodilation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。