Electric field responsive nanotransducers for glioblastoma

用于治疗胶质母细胞瘤的电场响应纳米传感器

阅读:7
作者:Akhil Jain, Isobel Jobson, Michaela Griffin, Ruman Rahman, Stuart Smith, Frankie J Rawson

Background

Electric field therapies such as Tumor Treating Fields (TTFields) have emerged as a bioelectronic treatment for isocitrate dehydrogenase wild-type and IDH mutant grade 4 astrocytoma Glioblastoma (GBM). TTFields rely on alternating current (AC) electric fields (EF) leading to the disruption of dipole alignment and induced dielectrophoresis (DEP) during cytokinesis. Although TTFields have a favourable side effect profile, particularly compared to cytotoxic chemotherapy, survival benefits remain limited (~ 4.9 months) after an extensive treatment regime (20 hours/day for 18 months). The cost of the technology also limits its clinical adoption worldwide. Therefore, the discovery of new technology that can enhance both the therapeutic efficiency and efficacy of these TTFields will be of great benefit to cancer treatment and decrease healthcare costs worldwide.

Conclusions

This work presents preliminary evidence which could help to improve future EF applications for bioelectronic medicine. Furthermore, the merits of spherical morphology, excellent colloidal stability, and low toxicity, make these NPs ideal for future studies for elucidating the detailed mechanism and efficacy upon their delivery in GBM preclinical models.

Methods

In this work, we report the role of electrically conductive gold (GNPs), dielectric silica oxide (SiO2), and semiconductor zinc oxide (ZnO) nanoparticles (NPs) as transducers for enhancing EF mediated anticancer effects on patient derived GBM cells. Physicochemical properties of these NPs were analyzed using spectroscopic, electron microscopy, and light-scattering techniques.

Results

In vitro TTFields studies indicated an enhanced reduction in the metabolic activity of patient-derived Glioma INvasive marginal (GIN 28) and Glioma contrast enhanced core (GCE 28) GBM As per our journal style, article titles should not include capitalised letters unless these are proper nouns/acronyms. We have therefore used the article title "Electric field responsive nanotransducers for glioblastoma" as opposed to "Electric Field Responsive Nanotransducers for Glioblastoma" as given in the submission system. Please check if this is correct.cells in groups treated with NPs vs. control groups, irrespective of NPs dielectric properties. Our results indicate the inorganic NPs used in this work enhance the intracellular EF effects that could be due to the virtue of bipolar dielectrophoretic and electrophoretic effects. Conclusions: This work presents preliminary evidence which could help to improve future EF applications for bioelectronic medicine. Furthermore, the merits of spherical morphology, excellent colloidal stability, and low toxicity, make these NPs ideal for future studies for elucidating the detailed mechanism and efficacy upon their delivery in GBM preclinical models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。