Limitations and possibilities of low cell number ChIP-seq

低细胞数 ChIP-seq 的局限性和可能性

阅读:4
作者:Gregor D Gilfillan, Timothy Hughes, Ying Sheng, Hanne S Hjorthaug, Tobias Straub, Kristina Gervin, Jennifer R Harris, Dag E Undlien, Robert Lyle

Background

Chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) offers high resolution, genome-wide analysis of DNA-protein interactions. However, current standard

Conclusions

The optimised method presented here considerably reduces the input requirements for performing native ChIP-seq. It extends the applicability of the technique to isolated primary cells and rare cell populations (e.g. biobank samples, stem cells), and in many cases will alleviate the need for cell culture and any associated alteration of epigenetic marks. However, this study highlights a challenge inherent to ChIP-seq from low cell numbers: as cell input numbers fall, levels of unmapped sequence reads and PCR-generated duplicate reads rise. We discuss a number of solutions to overcome the effects of reducing cell number that may aid further improvements to ChIP performance.

Results

We present an enhanced native ChIP-seq method tailored to low cell numbers that represents a 200-fold reduction in input requirements over existing protocols. The protocol was tested over a range of starting cell numbers covering three orders of magnitude, enabling determination of the lower limit of the technique. At low input cell numbers, increased levels of unmapped and duplicate reads reduce the number of unique reads generated, and can drive up sequencing costs and affect sensitivity if ChIP is attempted from too few cells. Conclusions: The optimised method presented here considerably reduces the input requirements for performing native ChIP-seq. It extends the applicability of the technique to isolated primary cells and rare cell populations (e.g. biobank samples, stem cells), and in many cases will alleviate the need for cell culture and any associated alteration of epigenetic marks. However, this study highlights a challenge inherent to ChIP-seq from low cell numbers: as cell input numbers fall, levels of unmapped sequence reads and PCR-generated duplicate reads rise. We discuss a number of solutions to overcome the effects of reducing cell number that may aid further improvements to ChIP performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。