Chemically Precise Glycoengineering Improves Human Insulin

化学精确糖基化工程改善人类胰岛素

阅读:1
作者:Xiaoyang Guan ,Patrick K Chaffey ,Xiuli Wei ,Daniel R Gulbranson ,Yuan Ruan ,Xinfeng Wang ,Yaohao Li ,Yan Ouyang ,Liqun Chen ,Chen Zeng ,Theo N Koelsch ,Amy H Tran ,Wei Liang ,Jingshi Shen ,Zhongping Tan

Abstract

Diabetes is a leading cause of death worldwide and results in over 3 million annual deaths. While insulin manages the disease well, many patients fail to comply with injection schedules, and despite significant investment, a more convenient oral formulation of insulin is still unavailable. Studies suggest that glycosylation may stabilize peptides for oral delivery, but the demanding production of homogeneously glycosylated peptides has hampered transition into the clinic. We report here the first total synthesis of homogeneously glycosylated insulin. After characterizing a series of insulin glycoforms with systematically varied O-glycosylation sites and structures, we demonstrate that O-mannosylation of insulin B-chain Thr27 reduces the peptide's susceptibility to proteases and self-association, both critical properties for oral dosing, while maintaining full activity. This work illustrates the promise of glycosylation as a general mechanism for regulating peptide activity and expanding its therapeutic use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。