Hypoxia impedes vasculogenesis of in vitro engineered bone

缺氧阻碍体外工程骨的血管生成

阅读:9
作者:Debby Gawlitta, Joost O Fledderus, Mattie H P van Rijen, Inge Dokter, Jacqueline Alblas, Marianne C Verhaar, Wouter J A Dhert

Abstract

To ensure the survival of engineered bone after implantation, we combined human endothelial colony forming cells (ECFCs) and multipotent stromal cells (MSCs) as a proof of concept in a co-culture model to create in vitro prevascularized bone constructs. We hypothesized that a hypoxic stimulus will contribute to prevascularization of engineered bone. Bone marrow-derived MSCs and ECFCs from human adult peripheral blood were allowed to form co-culture pellets containing ECFCs and MSCs (1:4) or MSCs only in controls. After culture under normoxia or hypoxia (5%), pellets were harvested and processed for immunohistochemistry of CD31, α-smooth muscle actin, and osteocalcin. Expression of vascular endothelial growth factor and SDF-1α was analyzed by PCR to elucidate their involvement in hypoxic stimulation of prevascularization. The normoxic condition in co-cultures of MSCs and ECFCs supported the formation and maintenance of prevascular structures, including organized CD31-positive cells embraced by differentiated mural cells. These structures failed to form in hypoxic conditions, thereby rejecting the hypothesis that hypoxia stimulates prevasculogenesis in three-dimensional engineered bone constructs. Further, the formation of prevascular structures was paralleled by increased SDF-1α expression. It is suggested that actual oxygen levels were below 5% in the hypoxic co-cultures, which prevented prevascular structure formation. In conclusion, our normoxic co-culture model containing cells from clinically relevant sources sustained simultaneous endothelial, smooth muscle, and osteogenic differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。