The role of hippocampal CaMKII in resilience to trauma-related psychopathology

海马 CaMKII 在创伤相关精神病理学恢复中的作用

阅读:7
作者:Somoday Hazra, Joyeeta Dutta Hazra, Rani Amit Bar-On, Yanhong Duan, Shahaf Edut, Xiaohua Cao, Gal Richter-Levin

Abstract

Traumatic stress exposure can form persistent trauma-related memories. However, only a minority of individuals develop post-traumatic stress disorder (PTSD) symptoms upon exposure. We employed a rat model of PTSD, which enables differentiating between exposed-affected and exposed-unaffected individuals. Two weeks after the end of exposure, male rats were tested behaviorally, following an exposure to a trauma reminder, identifying them as trauma 'affected' or 'unaffected.' In light of the established role of hippocampal synaptic plasticity in stress and the essential role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in hippocampal based synaptic plasticity, we pharmacologically inhibited CaMKII or knocked-down (kd) αCaMKII (in two separate experiments) in the dorsal dentate gyrus of the hippocampus (dDG) following exposure to the same trauma paradigm. Both manipulations brought down the prevalence of 'affected' individuals in the trauma-exposed population. A day after the last behavioral test, long-term potentiation (LTP) was examined in the dDG as a measure of synaptic plasticity. Trauma exposure reduced the ability to induce LTP, whereas, contrary to expectation, αCaMKII-kd reversed this effect. Further examination revealed that reducing αCaMKII expression enables the formation of αCaMKII-independent LTP, which may enable increased resilience in the face of a traumatic experience. The current findings further emphasize the pivotal role dDG has in stress resilience.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。