Prion protein functions as a ferrireductase partner for ZIP14 and DMT1

朊病毒蛋白作为 ZIP14 和 DMT1 的铁还原酶伙伴发挥作用

阅读:7
作者:Ajai K Tripathi #, Swati Haldar #, Juan Qian, Amber Beserra, Srinivas Suda, Ajay Singh, Ulrich Hopfer, Shu G Chen, Michael D Garrick, Jerrold R Turner, Mitchell D Knutson, Neena Singh

Abstract

Excess circulating iron is stored in the liver, and requires reduction of non-Tf-bound iron (NTBI) and transferrin (Tf) iron at the plasma membrane and endosomes, respectively, by ferrireductase (FR) proteins for transport across biological membranes through divalent metal transporters. Here, we report that prion protein (PrP(C)), a ubiquitously expressed glycoprotein most abundant on neuronal cells, functions as a FR partner for divalent-metal transporter-1 (DMT1) and ZIP14. Thus, absence of PrP(C) in PrP-knock-out (PrP(-/-)) mice resulted in markedly reduced liver iron stores, a deficiency that was not corrected by chronic or acute administration of iron by the oral or intraperitoneal routes. Likewise, preferential radiolabeling of circulating NTBI with (59)Fe revealed significantly reduced uptake and storage of NTBI by the liver of PrP(-/-) mice relative to matched PrP(+/+) controls. However, uptake, storage, and utilization of ferritin-bound iron that does not require reduction for uptake were increased in PrP(-/-) mice, indicating a compensatory response to the iron deficiency. Expression of exogenous PrP(C) in HepG2 cells increased uptake and storage of ferric iron (Fe(3+)), not ferrous iron (Fe(2+)), from the medium, supporting the function of PrP(C) as a plasma membrane FR. Coexpression of PrP(C) with ZIP14 and DMT1 in HepG2 cells increased uptake of Fe(3+) significantly, and surprisingly, increased the ratio of N-terminally truncated PrP(C) forms lacking the FR domain relative to full-length PrP(C). Together, these observations indicate that PrP(C) promotes, and possibly regulates, the uptake of NTBI through DMT1 and Zip14 via its FR activity. Implications of these observations for neuronal iron homeostasis under physiological and pathological conditions are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。