CD133 induces tumour-initiating properties in HEK293 cells

CD133 诱导 HEK293 细胞的肿瘤起始特性

阅读:5
作者:Martin Canis, Axel Lechner, Brigitte Mack, Pamela Zengel, Rüdiger Paul Laubender, Udo Koehler, Vigo Heissmeyer, Olivier Gires

Abstract

The pentaspan protein CD133 (Prominin-1) is part of the signature of tumour-initiating cells for various cancer entities. The aim of the present study was to investigate the impact of ectopic CD133 expression on tumourigenic properties of otherwise CD133-negative, non-tumourigenic cells in vitro and in vivo. CD133 was stably transfected into human embryonic kidney 293 (HEK293) which was then sorted for the expression of CD133. The effects of CD133 on cell proliferation were assessed upon standard cell counting of sorted cells at various time points. Severe combined immunodeficient (SCID) mice (n = 30) were injected with HEK293 CD133(high) and CD133(low) transfectants (5 × 10(3), 1 × 10(5), or 5 × 10(6) cells per injection). The expression of CD133, Ki67, CD44s, CD44v6, and EpCAM was analysed upon immunohistochemical staining of cryosections with specific antibodies. In vitro, ectopic expression of CD133 did influence neither cell proliferation nor cell cycle distribution of otherwise CD133-negative HEK293 cells. However, CD133(high) cells generated tumours in vivo in SCID mice with at least 1,000-fold increased frequency compared to CD133(low) cells. Tumour load was also significantly increased in CD133(high) cells as compared to those tumours formed by high numbers of CD133(low) cells. Immunohistochemistry stainings disclosed no changes in Ki67, CD44s, CD44v6, or EpCAM once tumours were formed by either cell type. CD133 induces tumour-initiating properties in HEK293 cells in vivo and is potentially involved in the regulation of tumourigenicity. Future research will aim at the elucidation of molecular mechanisms of CD133-induced tumourigenicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。