Reverse transcription-recombinase-aided amplification and CRISPR/Cas12a-based visual detection of maize chlorotic mottle virus

逆转录重组酶辅助扩增和基于 CRISPR/Cas12a 的玉米褪绿斑驳病毒可视化检测

阅读:8
作者:Xueyan Duan, Wendi Ma, Zhiyuan Jiao, Yiying Tian, Ragab Gomaa Ismail, Tao Zhou, Zaifeng Fan

Abstract

Maize chlorotic mottle virus (MCMV) is one of the important quarantine pathogens in China. It often co-infects with one or two viruses in the family Potyviridae and causes maize lethal necrosis disease. Therefore, an accurate and sensitive method for the detection of MCMV is urgently needed. Combined with reverse transcription and recombinase-aided amplification, we developed a CRISPR/Cas12a-based visual nucleic acid detection system targeting the MCMV coat protein gene. The whole process can be completed within 45 min with high sensitivity. This system could detect cDNAs diluted up to 10-5 when 2000 ng of total RNA was used for reverse transcription. The Cas12a/crRNA complex designed for MCMV detection could recognize and cleave the targeted double-stranded DNA, and ultimately cleave the single-stranded DNA probes and produce fluorescent signals. The green fluorescence produced under blue light (440-460 nm) in this procedure could be observed by the naked eye. Since this novel method is specific, rapid, sensitive and does not require special instruments and technical expertise, it should be suitable for on-site visual detection of MCMV in seeds, plants of maize and potentially in its insect vectors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。