NOX2 and NOX4 control mitochondrial function in chronic myeloid leukaemia

NOX2 和 NOX4 控制慢性粒细胞白血病的线粒体功能

阅读:8
作者:Marta Romo-González, Carla Ijurko, María Teresa Alonso, Marta Gómez de Cedrón, Ana Ramirez de Molina, María Eugenia Soriano, Ángel Hernández-Hernández

Abstract

Cancer cells are characterised by an elevated metabolic plasticity and enhanced production of reactive oxygen species (ROS), two features acknowledged as hallmarks in cancer, with a high translational potential to the therapeutic setting. These aspects, that have been traditionally studied separately, are in fact intimately intermingled. As part of their transforming activity, some oncogenes stimulate rewiring of metabolic processes, whilst simultaneously promoting increased production of intracellular ROS. In this scenario the latest discoveries suggest the relevance of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) to connect ROS production and metabolic control. Here we have analysed the relevance of NOX2 and NOX4 in the regulation of metabolism in chronic myeloid leukaemia (CML), a neoplasia driven by the expression of the breakpoint cluster region-Abelson fusion oncogene (BCR-ABL). Silencing of NOX2 enhances glycolysis and oxidative phosphorylation rates, together with an enhanced production of mitochondrial ROS and a decrease in mitochondrial DNA copy number, which reflects mitochondrial dysfunction. NOX4 expression was upregulated upon NOX2 silencing, and this was required to alter mitochondrial function. Our results support the relevance of NOX2 to regulate metabolism-related signalling pathways downstream of BCR-ABL. Overall we show that NOX2, through the regulation of NOX4 expression, controls metabolism and mitochondrial function in CML cells. This notion was confirmed by transcriptomic analyses, that strongly relate both NOX isoforms with metabolism regulation in CML.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。