Occurrence, Bioaccumulation, and Risk Assessment of Organophosphate Esters in Rivers Receiving Different Effluents

接收不同流出物的河流中有机磷酸酯的存在、生物累积和风险评估

阅读:6
作者:Shuyan Da, Jun Wang

Abstract

Organophosphate esters (OPEs), as alternatives to brominated flame retardants, are extensively used in both production and daily life, with their environmental contamination and toxic effects being a concern. This study investigated the concentration levels, bioaccumulation, and ecological effects of OPEs in five different effluent-receiving rivers. The results demonstrate that the concentration range of Σ13OPEs across the five rivers was between 142.23 and 304.56 ng/L (mean: 193.50 ng/L). The highest pollution levels of OPEs were found in rivers receiving airport and industrial wastewater, followed by agricultural wastewater, mixed wastewater, and domestic wastewater. Tris(2-chloroisopropyl) phosphate (TCPP), triethyl phosphate (TEP), and tricresyl phosphate (TCrP) were identified as the main pollutants. The accumulation concentrations of OPEs in fish ranged from 54.0 to 1080.88 ng/g dw, with the highest bioaccumulation found in Pelteobagrus fulvidraco, followed by Carassius auratus and Misgurnus anguillicaudatus. The brain was the primary organ of accumulation, followed by the liver, gills, intestine, and muscle. Tri-n-propyl phosphate (TPeP) and TEP exhibited the highest bioconcentration, with log BAF values exceeding three. The bioaccumulation of OPEs was influenced by pollutant concentration levels, hydrophobic properties, and biological metabolism. Ecological risk assessment revealed that the cumulative risk values of Σ13OPEs ranged from 0.025 to 16.76, with TCrP being the major contributor. It posed a medium-low risk to algae but a high risk to crustaceans and fish.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。