Performance of cold-preserved rat liver Microorgans as the biological component of a simplified prototype model of bioartificial liver

冷藏大鼠肝脏微生物作为生物人工肝简化原型模型生物组分的性能

阅读:4
作者:María Dolores Pizarro, María Gabriela Mediavilla, Alejandra Beatriz Quintana, Ángel Luis Scandizzi, Joaquín Valentín Rodriguez, María Eugenia Mamprin

Aim

To develop a simplified bioartificial liver (BAL) device prototype, suitable to use freshly and preserved liver Microorgans (LMOs) as biological component.

Conclusion

This prototype relied on a simple design and excellent performance. It's a practical tool to evaluate the detoxification ability of LMOs subjected to different preservation protocols.

Methods

The system consists of 140 capillary fibers through which goat blood is pumped. The evolution of hematocrit, plasma and extra-fiber fluid osmolality was evaluated without any biological component, to characterize the prototype. LMOs were cut and cold stored 48 h in BG35 and ViaSpan® solutions. Fresh LMOs were used as controls. After preservation, LMOs were loaded into the BAL and an ammonia overload was added. To assess LMOs viability and functionality, samples were taken to determine lactate dehydrogenase (LDH) release and ammonia detoxification capacity.

Results

The concentrations of ammonia and glucose, and the fluids osmolalities were matched after the first hour of perfusion, showing a proper exchange between blood and the biological compartment in the minibioreactor. After 120 min of perfusion, LMOs cold preserved in BG35 and ViaSpan® were able to detoxify 52.9% ± 6.5% and 53.6% ± 6.0%, respectively, of the initial ammonia overload. No significant differences were found with Controls (49.3% ± 8.8%, P < 0.05). LDH release was 6.0% ± 2.3% for control LMOs, and 6.2% ± 1.7% and 14.3% ± 1.1% for BG35 and ViaSpan® cold preserved LMOs, respectively (n = 6, P < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。