Expression of BK channels and Na+-K+ pumps in the apical membrane of lacrimal acinar cells suggests a new molecular mechanism for primary tear-secretion

泪腺腺泡细胞顶端膜中 BK 通道和 Na+-K+ 泵的表达提示了原发性泪液分泌的一种新分子机制

阅读:7
作者:János Almássy, Gyula Diszházi, Marianna Skaliczki, Ildikó Márton, Zsuzsanna Édua Magyar, Péter P Nánási, David I Yule

Conclusions

Based on these results we propose a new primary fluid-secretion model in the lacrimal gland, in which the paracellular pathway of Na+ secretion is supplemented by a transcellular pathway driven by apical Na+-K+ pumps.

Methods

Whole-cell patch-clamp-electrophysiology, spatially localized flash-photolysis of Ca2+ and temporally resolved digital Ca2+-imaging was combined. Immunostaining of enzymatically isolated mouse lacrimal acinar cells was performed.

Purpose

Primary fluid secretion in secretory epithelia relies on the unidirectional transport of ions and water across a single cell layer. This mechanism requires the asymmetric apico-basal distribution of ion transporters and intracellular Ca2+ signaling. The primary aim of the present study was to verify the localization and the identity of Ca2+-dependent ion channels in acinar cells of the mouse lacrimal gland.

Results

We show that the Ca2+-dependent K+-conductance is paxilline-sensitive, abundant in the luminal, but negligible in the basal membrane; and co-localizes with Cl--conductance. These data suggest that both Cl- and K+ are secreted into the lumen and thus they account for the high luminal [Cl-] (∼141 mM), but not for the relatively low [K+] (<17 mM) of the primary fluid. Accordingly, these results also imply that K+ must be reabsorbed from the primary tear fluid by the acinar cells. We hypothesized that apically-localized Na+-K+ pumps are responsible for K+-reabsorption. To test this possibility, immunostaining of lacrimal acinar cells was performed using anti-Na+-K+ ATP-ase antibody. We found positive fluorescence signal not only in the basal, but in the apical membrane of acinar cells too. Conclusions: Based on these results we propose a new primary fluid-secretion model in the lacrimal gland, in which the paracellular pathway of Na+ secretion is supplemented by a transcellular pathway driven by apical Na+-K+ pumps.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。