Addition of hyaluronic acid to alginate embedded chondrocytes interferes with insulin-like growth factor-1 signaling in vitro and in vivo

在藻酸盐包埋的软骨细胞中添加透明质酸可干扰体内和体外的胰岛素样生长因子-1信号传导

阅读:8
作者:Diana M Yoon, Shane Curtiss, A Hari Reddi, John P Fisher

Abstract

The development of an engineered tissue requires a clear understanding of the interactions between the individual components. In this study, we investigated how the addition of hyaluronic acid (HA) to a cartilage tissue engineered scaffold alters chondrocytic expression, and specifically the expression of insulin-like growth factor-1 (IGF-1) signaling molecules. Bovine chondrocytes were embedded (7 million cells/mL) in 2.0% w/v alginate hydrogels containing varying HA concentrations (0, 0.05, 0.50, and 5.00 mg/mL). In vitro constructs were cultured with exogenous IGF-1, and gene expression was monitored at days 1, 4, and 8 for IGF-1, IGF-1 receptor (IGF-1R), IGF binding protein 3 (IGFBP-3), type II collagen and type I collagen. In vivo constructs were precultured for 24 h with exogenous IGF-1 before being implanted subcutaneously in severe combined immunodeficient mice; samples were analyzed using histology at days 7, 14, and 21. Results indicate that, with the addition of high levels (5.00 mg/mL) of HA, IGF-1 can become entrapped within the matrix and therefore interfere with the delivery of IGF-1 to chondrocytes. In vitro and in vivo data showed that increasing the concentration of HA in an alginate hydrogel can decrease chondrocyte IGF-1 expression. IGF-1R expression did not change with HA concentration, and the addition of any HA did not significantly alter IGFBP-3 expression. Chondrocytes continuously expressed phenotypic type II collagen in vitro and in vivo throughout the study for all the groups. However, for all the HA concentrations investigated, chondrocytes showed more of a fibroblastic phenotype, as indicated by greater expression of type I collagen than with no HA, in vitro and in vivo. In conclusion, these results indicate that HA interferes with the delivery of IGF-1 to chondrocytes, affecting the endogenous expression of IGF-1 signaling molecules and the resulting chondrocyte phenotype, and therefore demonstrating the critical effect of biomaterial scaffolds on encapsulated cell function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。