Background
Polydatin (POL), a natural stilbenoid, has multiple pharmacological activities. However, its effect on osteoporotic bone defects has not yet been examined. This study was designed to explore the unknown role of POL on osteoporotic bone repair.
Conclusion
The data above indicated that POL could accelerate osteoporotic bone repair by inducing the osteogenesis-angiogenesis coupling of BMSCs via the PI3K/AKT/GSK-3β/β-catenin pathway, which provided new insight and strategy for osteoporotic bone repair.
Methods
The effect of POL on osteogenesis and angiogenesis were investigated firstly. Then a series of angiogenesis-related assays were carried out to explore the relationship between osteogenesis and angiogenesis of POL, and the underlying mechanism was further explored. Whereafter, ovariectomy-induced osteoporosis rats with bone defect were treated with POL or placebo, the imageological and histological examinations were conducted to assess the effect of POL on osteoporotic bone repair.
Results
The moderate concentrations (1 μM and 10 μM) of POL enhanced the osteogenesis of bone marrow mesenchymal stem cells (BMSCs) and elevated the expression of angiogenic-specific markers. Further research found that POL-induced human umbilical vein endothelial cells migration and tube formation through the osteogenesis-angiogenesis coupling of BMSCs, and the POL-induced osteogenesis-angiogenesis coupling was reversed after co-cultured with LY294002. Mechanistically, this was conducted via activating PI3K/AKT/GSK-3β/β-catenin pathway. After that, using the osteoporotic bone defect rat model, the authors, observed that POL facilitated osteoporotic bone repair through enhancing osteogenesis and CD31 hi EMCN hi type H-positive vessels formation via the PI3K/AKT/GSK-3β/β-catenin pathway.
