Environmentally Benign pSOFC for Emissions-Free Energy: Assessment of Nickel Network Resistance in Anodic Ni/BCY15 Nanocatalyst

环境友好型 pSOFC,实现零排放能源:阳极 Ni/BCY15 纳米催化剂中镍网络电阻的评估

阅读:4
作者:Margarita Gabrovska, Dimitrinka Nikolova, Hristo Kolev, Daniela Karashanova, Peter Tzvetkov, Blagoy Burdin, Emiliya Mladenova, Daria Vladikova, Tatyana Tabakova

Abstract

Yttrium-doped barium cerate (BCY15) was used as ceramic matrix to obtain Ni/BCY15 anode cermet for application in proton-conducting solid oxide fuel cells (pSOFC). Ni/BCY15 cermets were prepared in two different types of medium, namely deionized water (W) and anhydrous ethylene glycol (EG) using wet chemical synthesis by hydrazine. An in-depth analysis of anodic nickel catalyst was made aiming to elucidate the effect of anode tablets' preparation by high temperature treatment on the resistance of metallic Ni in Ni/BCY15-W and Ni/BCY15-EG anode catalysts. On purpose reoxidation upon high-temperature treatment (1100 °C for 1 h) in air ambience was accomplished. Detailed characterization of reoxidized Ni/BCY15-W-1100 and Ni/BCY15-EG-1100 anode catalysts by means of surface and bulk analysis was performed. XPS, HRTEM, TPR, and impedance spectroscopy measurements experimentally confirmed the presence of residual metallic Ni in the anode catalyst prepared in ethylene glycol medium. These findings were evidence of strong metal Ni network resistance to oxidation in anodic Ni/BCY15-EG. Enhanced resistance of the metal Ni phase contributed to a new microstructure of the Ni/BCY15-EG-1100 anode cermet getting more stable to changes that cause degradation during operation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。