Characterization and Alternative Splicing Profiles of the Lipoxygenase Gene Family in Tea Plant (Camellia sinensis)

茶树(Camellia sinensis)脂氧合酶基因家族的特征和可变剪接谱

阅读:9
作者:Junyan Zhu, Xuewen Wang, Lingxiao Guo, Qingshan Xu, Shiqi Zhao, Fangdong Li, Xiaomei Yan, Shengrui Liu, Chaoling Wei

Abstract

Oxylipins, including jasmonic acid (JA) and volatiles, are important for signaling in plants, and these are formed by the lipoxygenase (LOX) enzyme family. There is a large gap in understanding of the underlying molecular basis of their roles in tea plants. Here, we identified 11 CsLOX genes from the tea plant (Camellia sinensis), and characterized their phylogeny, gene structure and protein features into three subclasses. We then examined their enzymatic activities, LOX expression and alternative splicing of transcripts during development and in response to abiotic or biotic stresses in tea plants. In vitro expressed protein assays showed that the CsLOX2, 3 and 9 enzymatically function to produce 9/13-HPOT, 13-HPOT and 9-HPOT, respectively. CsLOX2 and CsLOX9 green fluorescent protein (GFP) fusion proteins localized to chloroplasts and the cytoplasm, respectively. RNA sequencing, quantitative reverse transcription-PCR and Northern blot analysis suggested that CsLOX5, 6 and 9 were predominantly expressed in seeds, flowers and roots, respectively. CsLOX2, 3, 4, 6 and 7 were up-regulated after attack by the insect Ectropis oblique, while CsLOX1 was induced after infection with the pathogen Glomerella cingulata. CsLOX3, 7 and 10 were up-regulated by JA but not ABA or salicylic acid. Long-term cold stress down-regulated CsLOX expression while a short duration of cold induced the expression of CsLOX1, 6 and 7. Alternatively spliced transcripts of six CsLOX genes were dynamically regulated through time and varied in relative abundances under the investigated stresses; we propose a mechanism of competing or compensating regulation between isoforms. This study improves our understanding of evolution of LOXs and regulation of their diverse functions in plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。