Identification of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 as functional targets of the anti-inflammatory and anti-carcinogenic garcinol

鉴定 5-脂氧合酶和微粒体前列腺素 E2 合酶-1 为抗炎和抗致癌藤黄酚的功能靶点

阅读:7
作者:Andreas Koeberle, Hinnak Northoff, Oliver Werz

Abstract

Garcinol (camboginol) from the fruit rind of Guttiferae species shows anti-carcinogenic and anti-inflammatory properties, but the underlying molecular mechanisms are unclear. Here we show that garcinol potently interferes with 5-lipoxygenase (EC 7.13.11.34) and microsomal prostaglandin (PG)E2 synthase (mPGES)-1 (EC 5.3.99.3), enzymes that play pivotal roles in inflammation and tumorigenesis. In cell-free assays, garcinol inhibited the activity of purified 5-lipoxygenase and blocked the mPGES-1-mediated conversion of PGH2 to PGE2 with IC50 values of 0.1 and 0.3 microM, respectively. Garcinol suppressed 5-lipoxygenase product formation also in intact human neutrophils and reduced PGE2 formation in interleukin-1beta-stimulated A549 human lung carcinoma cells as well as in human whole blood stimulated by lipopolysaccharide. Moreover, garcinol interfered with isolated cyclooxygenase (COX)-1 (EC 1.14.99.1, IC50 = 12 microM) and with the formation of COX-1-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid and thromboxane B2 in human platelets. In contrast, neither Ca2+-ionophore (A23187)-induced arachidonic acid release in neutrophils nor COX-2 activity in A549 cells or whole blood, measured as formation of 6-keto PGF1alpha, or isolated human recombinant COX-2 were significantly affected by garcinol (< or = 30 microM). Together, the high potency of garcinol to selectively suppress PGE2 synthesis and 5-lipoxygenase product formation provides a molecular basis for the anti-inflammatory and anti-carcinogenic effects of garcinol and rationalizes its therapeutic use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。