Conclusions
EthE inhibits hypernociception induced by TNF-α, IL-1β, bradykinin and prostaglandin E2. EthE exhibited anti-nociceptive effects possibly mediated through opioidergic, adenosinergic, ATP-sensitive potassium channels and nitric oxide cyclic GMP pathways.
Methods
The effect of EthE (30, 100 and 300 mg/kg) on intraplantar injection of pain mediators such as interleukin-1β, tumour necrosis factor-α, prostaglandin E2 and bradykinin was evaluated in male Sprague Dawley rats using Randall-Selitto test for 5 h. The effect of specific antagonists to the opioidergic, adenosinergic, ATP-sensitive K+ channels, nitric oxide, serotonergic, muscarinic, adrenergic and voltage-gated calcium channel on the anti-nociceptive effect of EthE (100 mg/kg) was evaluated using the formalin test in male imprinting control region (ICR) mice for 1 h.
Purpose
To predict possible nociceptive pathways involved in the anti-nociceptive effects of EthE. Materials and
Results
Pretreatment of the rats with EthE significantly reversed the hypernociception induced by intraplantar injection of TNF-α (F4,120 = 10.86, p < 0.0001), IL-1β (F4,120 = 14.71, p < 0.0001), bradykinin (F4,80 = 12.52, p < 0.0001) and prostaglandin E2 (F5,144 = 6.165, p = 0.0001). The anti-nociceptive effect exhibited by EthE in the formalin test was reversed by systemic administration of NG-l-nitro-arginine methyl ester, naloxone, theophylline and glibenclamide. Conclusions: EthE inhibits hypernociception induced by TNF-α, IL-1β, bradykinin and prostaglandin E2. EthE exhibited anti-nociceptive effects possibly mediated through opioidergic, adenosinergic, ATP-sensitive potassium channels and nitric oxide cyclic GMP pathways.
