Optimization of Filler Compositions of Electrically Conductive Polypropylene Composites for the Manufacturing of Bipolar Plates

用于制造双极板的导电聚丙烯复合材料填料组成的优化

阅读:5
作者:Muhammad Tariq, Utkarsh, Nabeel Ahmed Syed, Amir Hossein Behravesh, Remon Pop-Iliev, Ghaus Rizvi

Abstract

In this research, polypropylene (PP)-graphite composites were prepared using the melt mixing technique in a twin-screw extruder. Graphite, multi-walled carbon nanotubes (MWCNT), carbon black (CB), and expanded graphite (EG) were added to the PP in binary, ternary, and quaternary formations. The graphite was used as a primary filler, and MWCNT, CB, and EG were added to the PP-graphite composites as secondary fillers at different compositions. The secondary filler compositions were considered the control input factors of the optimization study. A full factorial design of the L-27 Orthogonal Array (OA) was used as a Design of Experiment (DOE). The through-plane electrical conductivity and flexural strength were considered the output responses. The experimental data were interpreted via Analysis of Variance (ANOVA) to evaluate the significance of each secondary filler. Furthermore, statistical modeling was performed using response surface methodology (RSM) to predict the properties of the composites as a function of filler composition. The empirical model for the filler formulation demonstrated an average accuracy of 83.9% and 93.4% for predicting the values of electrical conductivity and flexural strength, respectively. This comprehensive experimental study offers potential guidelines for producing electrically conductive thermoplastic composites for the manufacturing of bipolar fuel cell plates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。