Inhibition of c-Jun N-terminal kinase activity enhances vestibular schwannoma cell sensitivity to gamma irradiation

抑制 c-Jun N 端激酶活性可增强前庭神经鞘瘤细胞对伽马射线的敏感性

阅读:6
作者:Wei Ying Yue, J Jason Clark, Michael Telisak, Marlan R Hansen

Background

Radiosurgery is increasingly used to treat vestibular schwannomas (VSs). Increasing the sensitivity of VS cells to irradiation (IR) could allow for lower and/or more effective doses of IR, improving safety and efficacy. Persistent c-Jun N-terminal kinase (JNK) activity in VS cells reduces cell death by suppressing the accumulation of reactive oxygen species (ROS), raising the possibility that JNK activity protects against IR-induced VS cell death, which is mediated by ROS.

Conclusion

Inhibition of JNK signaling decreases histone 2AX phosphorylation and increases ROS and apoptosis in VS cells after gamma irradiation. These results raise the possibility of using JNK inhibitors to increase the effectiveness of radiosurgery for treatment of VSs.

Methods

Primary human VS cultures, derived from acutely resected tumors, received single doses (5-40 Gy) of gamma irradiation. Histone 2AX phosphorylation, a marker of IR-induced DNA damage, was assayed by Western blot and immunostaining. ROS levels were quantified by measuring 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescence. Cell apoptosis was determined by terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling.

Objective

To determine the extent to which JNK signaling contributes to VS cell radiosensitivity.

Results

The JNK inhibitors SP6000125 and I-JIP reduced histone 2AX phosphorylation after IR. They also increased H2DCFDA fluorescence in nonirradiated cultures and significantly increased IR-induced (5-10 Gy) H2DCFDA fluorescence 72 hours, but not 2 hours, after IR. Finally, I-JIP (50 μmol/L) significantly increased VS cell apoptosis in cultures treated with 20 to 40 Gy. I-JIP (20 μmol/L), SP600125 (20 μmol/L), and JNK1/2 short interfering RNA knockdown each increased VS cell apoptosis in cultures treated with 30 to 40 Gy, but not lower doses, of IR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。