Neuronal metabolism governs cortical network response state

神经元代谢控制皮质网络反应状态

阅读:6
作者:M O Cunningham, D D Pervouchine, C Racca, N J Kopell, C H Davies, R S G Jones, R D Traub, M A Whittington

Abstract

The level of arousal in mammals is correlated with metabolic state and specific patterns of cortical neuronal responsivity. In particular, rhythmic transitions between periods of high activity (up phases) and low activity (down phases) vary between wakefulness and deep sleep/anesthesia. Current opinion about changes in cortical response state between sleep and wakefulness is split between neuronal network-mediated mechanisms and neuronal metabolism-related mechanisms. Here, we demonstrate that slow oscillations in network state are a consequence of interactions between both mechanisms. Specifically, recurrent networks of excitatory neurons, whose membrane potential is partly governed by ATP-modulated potassium (K(ATP)) channels, mediate response-state oscillations via the interaction between excitatory network activity involving slow, kainate receptor-mediated events and the resulting activation of ATP-dependent homeostatic mechanisms. These findings suggest that K(ATP) channels function as an interface between neuronal metabolic state and network responsivity in mammalian cortex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。