Preparation, characterization, and anticancer effects of an inclusion complex of coixol with β-cyclodextrin polymers

薏苡仁酚与β-环糊精聚合物包合物的制备、表征及抗癌作用

阅读:11
作者:Xing-Chen Wang, Xin-Yu Shen, Lin Chen, Rong Wei, Ming-Yuan Wei, Cai-Hong Gu, Rong-Rong Xu, Sheng-Qing Ding, Bo Pan

Conclusions

These findings offer a new perspective for the potential clinical application of Coix in NSCLC therapy and its future research.

Methods

The coixol-CDP compound was synthesized through a solvent-stirring and freeze-drying technique. Its coixol content was quantified using HPLC, and its stability was tested under various conditions. The anticancer effects of the coixol-CDP compound (4.129, 8.259, 16.518, and 33.035 mg/L for 24, 48, and 72 h) on the proliferation of non-small cell lung cancer (NSCLC) A549 cells were evaluated using an MTT assay; cell morphology was examined by Hoechst nuclear staining; apoptosis and cell cycle was detected by flow cytometry; and the expression of apoptosis-related proteins was assessed by Western blots.

Objective

This study prepared a water-soluble coixol-β-cyclodextrin polymer (CDP) inclusion compound and evaluated its anticancer effect. Materials and

Results

The water-soluble coixol-CDP inclusion compound was successfully prepared with an inclusion ratio of 86.6% and an inclusion yield rate of 84.1%. The coixol content of the compound was 5.63% and the compound remained stable under various conditions. Compared to coixol alone, all 24, 48, and 72 h administrations with the coixol-CDP compound exhibited lower IC50 values (33.93 ± 2.28, 16.80 ± 1.46, and 6.93 ± 0.83 mg/L) in A549 cells; the compound also showed stronger regulatory effects on apoptosis-related proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。