Iron-binding properties of plant phenolics and cranberry's bio-effects

植物酚的铁结合特性和蔓越莓的生物效应

阅读:5
作者:Maolin Guo, Carlos Perez, Yibin Wei, Elise Rapoza, Gregory Su, Fadi Bou-Abdallah, N D Chasteen

Abstract

The health benefits of cranberries have long been recognized. However, the mechanisms behind its function are poorly understood. We have investigated the iron-binding properties of quercetin, the major phenolic phytochemical present in cranberries, and other selected phenolic compounds (chrysin, 3-hydroxyflavone, 3',4'-dihydroxy flavone, rutin, and flavone) in aqueous media using UV/vis, NMR and EPR spectroscopies and ESI-Mass spectrometry. Strong iron-binding properties have been confirmed for the compounds containing the "iron-binding motifs" identified in their structures. The apparent binding constants are estimated to be in the range of 10(6) M(-1) to 10(12) M(-2) in phosphate buffer at pH 7.2. Surprisingly, quercetin binds Fe(2+) even stronger than the well known Fe(2+)-chelator ferrozine at pH 7.2. This may be the first example of an oxygen-based ligand displaying stronger Fe(2+)-binding affinity than a strong nitrogen-based Fe(2+)-chelator. The strong Fe-binding properties of these phenolics argue that they may be effective in modulating cellular iron homeostasis under physiological conditions. Quercetin can completely suppress Fenton chemistry both at micromolar levels and in the presence of major cellular iron chelators like ATP or citrate. However, the radical scavenging activity of quercetin provides only partial protection against Fenton chemistry-mediated damage while Fe chelation by quercetin can completely inhibit Fenton chemistry, indicating that the chelation may be key to its antioxidant activity. These results demonstrate that quercetin and other phenolic compounds can effectively modulate iron biochemistry under physiologically relevant conditions, providing insight into the mechanism of action of bio-active phenolics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。