Digital Immune-Related Gene Expression Signatures In High-Grade Serous Ovarian Carcinoma: Developing Prediction Models For Platinum Response

高级别浆液性卵巢癌中的数字免疫相关基因表达特征:开发铂类治疗反应的预测模型

阅读:7
作者:Fabian Mairinger, Agnes Bankfalvi, Kurt Werner Schmid, Elena Mairinger, Pawel Mach, Robert Fh Walter, Sabrina Borchert, Sabine Kasimir-Bauer, Rainer Kimmig, Paul Buderath

Conclusion

Our results suggest that response to platinum-based therapy and DFS in ovarian HGSOC is associated with distinct gene-expression patterns related to the tumor immune-system. We generated predictive scoring systems which proved valid when applied to a set of 303 EOC patients.

Methods

Expression profiling of 770 immune-related genes was performed in tumor tissues from 23 HGSOC cases. Tumors were screened for prognostic and predictive biomarkers using the NanoString nCounter platform for digital gene expression analysis with the appurtenant PanCancer Immune Profiling panel. As validation cohort, gene expression data (RNA Seq) of 303 patients with epithelial ovarian carcinoma (EOC) were retrieved from the The Cancer Genome Atlas (TCGA) database. Different scoring-systems were computed for prediction of risk-of-resistance to cisplatin, disease-free survival (DFS) and overall survival (OS).

Purpose

Response to platinum-based therapy is a major prognostic factor in high-grade serous ovarian cancer (HGSOC). While the exact mechanisms of platinum-resistance remain unclear, evidence is accumulating for a connection between the organism's immune-response and response to platinum. However, predictive tools are missing. This study was performed to examine the putative role of the genetic tumor immune-microenvironment in mediating differential chemotherapy response in HGSOC patients. Patients and

Results

Validated on the TCGA-dataset, the developed scores identified 11 significantly differentially expressed genes (p <0.01**) associated with platinum response. HSD11B1 was highly significantly associated with lower risk of recurrence and 7 targets were found highly significantly influencing OS time (p <0.01**).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。