Solonamides, a Group of Cyclodepsipeptides, Influence Motility in the Native Producer Photobacterium galatheae S2753

Solonamides 是一类环缩肽,可影响本地生产者发光细菌 S2753 的运动能力

阅读:6
作者:Sheng-Da Zhang, Laura Louise Lindqvist, Thomas Isbrandt, Ingrid Lykke Borre, Mario Wibowo, Maike Wennekers Nielsen, Ling Ding, Thomas Ostenfeld Larsen, Lone Gram

Abstract

The marine bacterium Photobacterium galatheae S2753 produces a group of cyclodepsipeptides, called solonamides, which impede the virulence but not the survival of Staphylococcus aureus. In addition to their invaluable antivirulence activity, little is known about the biosynthesis and physiological function of solonamides in the native producer. This study generated a solonamide-deficient (Δsol) mutant by in-frame deletion of the sol gene, thereby identifying the core gene for solonamide biosynthesis. By annotation from antiSMASH, the biosynthetic pathway of solonamides in S2753 was also proposed. Mass spectrometry analysis of cell extracts found that deficiency of solonamide production influenced the production of a group of unknown compounds but otherwise did not alter the overall secondary metabolite profile. Physiological comparison between Δsol and wild-type S2753 demonstrated that growth dynamics and biofilm formation of both strains were similar; however, the Δsol mutant displayed reduced motility rings compared to the wild type. Reintroduction of sol restored solonamide production and motility to the mutant, indicating that solonamides influence the motility behavior of P. galatheae S2753. Proteomic analysis of the Δsol and wild-type strains found that eliminating solonamides influenced many cellular processes, including swimming-related proteins and proteins adjusting the cellular cyclic di-GMP concentration. In conclusion, our results revealed the biosynthetic pathway of solonamides and their ecological benefits to P. galatheae S2753 by enhancing motility, likely by altering the motile physiology. IMPORTANCE The broad range of bioactive potentials of cyclodepsipeptides makes these compounds invaluable in the pharmaceutical industry. Recently, a few novel cyclodepsipeptides have been discovered in marine Proteobacteria; however, their biosynthetic pathways remain to be revealed. Here, we demonstrated the biosynthetic genetic basis and pathway of the antivirulence compounds known as solonamides in P. galatheae S2753. This can pave the way for the biological overproduction of solonamides on an industrial scale. Moreover, the comparison of a solonamide-deficient mutant and wild-type S2753 demonstrated that solonamides stimulate the swimming behavior of S2753 and also influence a few key physiological processes of the native producers. These results evidenced that, in addition to their importance as novel drug candidates, these compounds play a pivotal role in the physiology of the producing microorganisms and potentially provide the native producer competitive benefits for their survival in nature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。