Target SNP selection in complex disease association studies

复杂疾病关联研究中的目标 SNP 选择

阅读:7
作者:Matthias Wjst

Background

The massive amount of SNP data stored at public internet sites provides unprecedented access to human genetic variation. Selecting target SNP for disease-gene association studies is currently done more or less randomly as decision rules for the selection of functional relevant SNPs are not available.

Conclusion

Only 10% of all gene-based SNPs have sequence-predicted functional relevance making them a primary target for genotyping in association studies.

Results

We implemented a computational pipeline that retrieves the genomic sequence of target genes, collects information about sequence variation and selects functional motifs containing SNPs. Motifs being considered are gene promoter, exon-intron structure, AU-rich mRNA elements, transcription factor binding motifs, cryptic and enhancer splice sites together with expression in target tissue. As a case study, 396 genes on chromosome 6p21 in the extended HLA region were selected that contributed nearly 20,000 SNPs. By computer annotation ~2,500 SNPs in functional motifs could be identified. Most of these SNPs are disrupting transcription factor binding sites but only those introducing new sites had a significant depressing effect on SNP allele frequency. Other decision rules concern position within motifs, the validity of SNP database entries, the unique occurrence in the genome and conserved sequence context in other mammalian genomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。