In vitro inflammatory multi-cellular model of osteoarthritis

骨关节炎的体外炎症多细胞模型

阅读:28
作者:Ileana Marrero-Berrios, S Elina Salter, Rishabh Hirday, Charles P Rabolli, Andrea Tan, Clark T Hung, Rene S Schloss, Martin L Yarmush

Conclusions

Our results highlight the importance of considering multi-cellular interactions when studying complex systems such as the articular joint. In addition, our approach, using a panel of both inflammatory and chondrocyte functional genes, provides a more comprehensive approach to investigate disease biomarkers, and responses to treatment.

Methods

We compared macrophages, chondrocytes and their co-culture responses to "low" Interleukin-1 (IL-1) or "high" IL-1/tumor necrosis factor (IL-1/TNF) levels of inflammation. We also investigated response changes following the administration of dexamethasone (DEX) or mesenchymal stromal cell (MSC) treatment via a combination of gene expression and secretory changes, reflecting not only inflammation, but also chondrocyte function.

Objective

Osteoarthritis (OA) is a chronic joint disease, with limited treatment options, characterized by inflammation and matrix degradation, and resulting in severe pain or disability. Progressive inflammatory interaction among key cell types, including chondrocytes and macrophages, leads to a cascade of intra- and inter-cellular events which culminate in OA induction. In order to investigate these interactions, we developed a multi-cellular in vitro OA model, to characterize OA progression, and identify and evaluate potential OA therapeutics in response to mediators representing graded levels of inflammatory severity.

Results

Inflamed chondrocytes presented an osteoarthritic-like phenotype characterized by high gene expression of pro-inflammatory cytokines and chemokines, up-regulation of ECM degrading proteases, and down-regulation of chondrogenic genes. Our results indicate that while MSC treatment attenuates macrophage inflammation directly, it does not reduce chondrocyte inflammatory responses, unless macrophages are present as well. DEX however, can directly attenuate chondrocyte inflammation. Conclusions: Our results highlight the importance of considering multi-cellular interactions when studying complex systems such as the articular joint. In addition, our approach, using a panel of both inflammatory and chondrocyte functional genes, provides a more comprehensive approach to investigate disease biomarkers, and responses to treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。