Exploring the Feasibility of 16S rRNA Short Amplicon Sequencing-Based Microbiota Analysis for Microbiological Safety Assessment of Raw Oyster

探索基于16S rRNA短扩增子测序的微生物群分析用于生牡蛎微生物安全性评估的可行性

阅读:5
作者:Jaeeun Kim, Byoung Sik Kim

Abstract

16S rRNA short amplicon sequencing-based microbiota profiling has been thought of and suggested as a feasible method to assess food safety. However, even if a comprehensive microbial information can be obtained by microbiota profiling, it would not be necessarily sufficient for all circumstances. To prove this, the feasibility of the most widely used V3-V4 amplicon sequencing method for food safety assessment was examined here. We designed a pathogen (Vibrio parahaemolyticus) contamination and/or V. parahaemolyticus-specific phage treatment model of raw oysters under improper storage temperature and monitored their microbial structure changes. The samples stored at refrigerator temperature (negative control, NC) and those that were stored at room temperature without any treatment (no treatment, NT) were included as control groups. The profiling results revealed that no statistical difference exists between the NT group and the pathogen spiked- and/or phage treated-groups even when the bacterial composition was compared at the possible lowest-rank taxa, family/genus level. In the beta-diversity analysis, all the samples except the NC group formed one distinct cluster. Notably, the samples with pathogen and/or phage addition did not form each cluster even though the enumerated number of V. parahaemolyticus in those samples were extremely different. These discrepant results indicate that the feasibility of 16S rRNA short amplicon sequencing should not be overgeneralized in microbiological safety assessment of food samples, such as raw oyster.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。