Interindividual Variation in Gut Nitrergic Neuron Density Is Regulated By GDNF Levels and ETV1

肠道氮能神经元密度的个体间差异受 GDNF 水平和 ETV1 调节

阅读:6
作者:Heikki T Virtanen, Peyman Choopanian, L Lauriina Porokuokka, Richard Forsgård, Daniel R Garton, Soophie Olfat, Riitta Korpela, Mehdi Mirzaie, Jaan-Olle Andressoo

Aims

The size and function of the enteric nervous system (ENS) can vary substantially between individuals. Because ENS function is involved in the etiology of a growing number of common human diseases, understanding mechanisms that regulate ENS variation is important.

Background & aims

The size and function of the enteric nervous system (ENS) can vary substantially between individuals. Because ENS function is involved in the etiology of a growing number of common human diseases, understanding mechanisms that regulate ENS variation is important.

Conclusions

Our results reveal how normal variation in GDNF levels influence ENS size, composition, and gut function, suggesting a mechanism for well-known interindividual variation among those parameters.

Methods

We analyzed RNAseq data from 41 normal adult human colon biopsies and single-cell RNA-seq data from human and mouse developing gut. To establish cause-consequence relationship we used alleles in mice that allow levels change of the candidate effector molecule in the comparable range to human samples. We used siRNA and primary neuronal cultures to define downstream molecular events and characterized gut functional changes in mice where molecular phenotypes paralleled findings in humans.

Results

We found that glial cell line-derived neurotrophic factor (GDNF) levels in the human colon vary about 5-fold and correlate strongly with nitrergic marker expression. In mice, we defined that GDNF levels are regulated via its 3' untranslated region (3' UTR) in the gastrointestinal tract and observed similar correlation between GDNF levels and nitrergic lineage development. We identified miR-9 and miR-133 as evolutionarily conserved candidates for negative regulation of GDNF expression in the gastrointestinal tract. Functionally, an increase in inhibitory nitrergic innervation results in an increase in gastrointestinal tract transit time, stool size, and water content accompanied with modestly reduced epithelial barrier function. Mechanistically, we found that GDNF levels regulate nitrergic lineage development via induction of transcription factor ETV1, corroborated by single-cell gene expression data in human and mouse developing enteric neurons. Conclusions: Our results reveal how normal variation in GDNF levels influence ENS size, composition, and gut function, suggesting a mechanism for well-known interindividual variation among those parameters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。