Rab27 in tick extracellular vesicle biogenesis and infection

Rab27 在蜱虫细胞外囊泡生物发生和感染中的作用

阅读:4
作者:L Rainer Butler, Nisha Singh, Liron Marnin, Luisa M Valencia, Anya J O'Neal, Francy E Cabrera Paz, Dana K Shaw, Adela S Oliva Chavez, Joao H F Pedra

Background

The blacklegged tick, Ixodes scapularis, transmits most vector-borne diseases in the United States. It vectors seven pathogens of public health relevance, including the emerging human pathogen Anaplasma phagocytophilum. Nevertheless, it remains critically understudied when compared to other arthropod vectors. I. scapularis releases a variety of molecules that assist in the modulation of host responses. Recently, it was found that extracellular vesicles (EVs) carry several of these molecules and may impact microbial transmission to the mammalian host. EV biogenesis has been studied in mammalian systems and is relatively well understood, but the molecular players important for the formation and secretion of EVs in arthropods of public health relevance remain elusive. RabGTPases are among the major molecular players in mammalian EV biogenesis. They influence membrane identity and vesicle budding, uncoating, and motility.

Conclusions

Rab27 is needed for successful tick feeding and may be important for acquiring A. phagocytophilum during a blood meal. Additionally, silencing rab27 in tick cells results in a shift of extracellular vesicle size. Overall, we have observed that Rab27 plays a key role in tick EV biogenesis and the tripartite interactions among the vector, the mammalian host, and a microbe it encounters.

Methods

Using BLAST, an in-silico pathway for EV biogenesis in ticks was re-constructed. We identified Rab27 for further study. EVs were collected from ISE6 tick cells after knocking down rab27 to examine its role in tick EV biogenesis. I. scapularis nymphs were injected with small interfering RNAs to knock down rab27 then fed on naïve and A. phagocytophilum infected mice to explore the importance of rab27 in tick feeding and bacterial acquisition.

Results

Our BLAST analysis identified several of the proteins involved in EV biogenesis in ticks, including Rab27. We show that silencing rab27 in I. scapularis impacts tick fitness. Additionally, ticks acquire less A. phagocytophilum after rab27 silencing. Experiments in the tick ISE6 cell line show that silencing of rab27 causes a distinct range profile of tick EVs, indicating that Rab27 is needed to regulate EV biogenesis. Conclusions: Rab27 is needed for successful tick feeding and may be important for acquiring A. phagocytophilum during a blood meal. Additionally, silencing rab27 in tick cells results in a shift of extracellular vesicle size. Overall, we have observed that Rab27 plays a key role in tick EV biogenesis and the tripartite interactions among the vector, the mammalian host, and a microbe it encounters.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。