Hydrophobic DES Based on Menthol and Natural Organic Acids for Use in Antifouling Marine Coatings

基于薄荷醇和天然有机酸的疏水性DES,用于防污船舶涂料

阅读:5
作者:Sara Valente, Filipe Oliveira, Inês João Ferreira, Alexandre Paiva, Rita G Sobral, Mário S Diniz, Susana P Gaudêncio, Ana Rita Cruz Duarte

Abstract

Marine biofouling negatively impacts industries with off-shore infrastructures, such as naval, oil, and aquaculture. To date, there are no ideal sustainable, economic, and environmentally benign solutions to deal with this phenomenon. The advances achieved in green solvents, as well as its application in different industries, such as pharmaceutical and biotechnology, have promoted the emergence of deep eutectic systems (DES). These eutectic systems have applications in various fields and can be revolutionary in the marine-based industrial sector. In this study, the main objective was to investigate the potential use of hydrophobic DES (HDES) based on menthol and natural organic acids for their use as marine antifouling coatings. Our strategy encompassed the physicochemical characterization of different formulations, which allowed us to identify the most appropriate molar ratio and intermolecular interactions for HDES formations. The miscibility of the resulting HDES with the marine coating has been evaluated and proven to be successful. The Men/OL (1:1) system proved to be the most promising in terms of cost-production and thus was the one used in subsequent antifouling tests. The cytotoxicity of this HDES was evaluated using an in vitro cell model (HaCat cells) showing no significant toxicity. Furthermore, the application of this system incorporated into coatings that are used in marine structures was also studied using marine species (Mytilus edulis mussels and Patella vulgata limpets) to evaluate both their antifouling and ecotoxicity effects. HDES Men/OL (1:1) incorporated in marine coatings was promising in reducing marine macrofouling and also proved to be effective at the level of microfouling without viability impairment of the tested marine species. It was revealed to be more efficient than using copper oxide, metallic copper, or ivermectin as antifouling agents. Biochemical assays performed on marine species showed that this HDES does not induce oxidative stress in the tested species. These results are a strong indication of the potential of this HDES to be sustainable and efficiently used in marine fouling control technologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。