UFMylation promotes orthoflavivirus infectious particle production

UFMylation 促进正黄病毒感染性颗粒的产生

阅读:7
作者:Hannah M Schmidt, Grace C Sorensen, Matthew R Lanahan, Jenna Grabowski, Moonhee Park, Stacy M Horner

Abstract

Post-translational modifications play crucial roles in viral infections, yet many potential modifications remain unexplored in orthoflavivirus biology. Here we demonstrate that the UFMylation system, a post-translational modification system that catalyzes the transfer of UFM1 onto proteins, promotes infection by multiple orthoflaviviruses including dengue virus, Zika virus, West Nile virus, and yellow fever virus. We found that depletion of the UFMylation E3 ligase complex proteins UFL1 and UFBP1, as well as other UFMylation machinery components (UBA5, UFC1, and UFM1), significantly reduces infectious virion production for orthoflaviviruses but not the hepacivirus, hepatitis C. Mechanistically, UFMylation does not regulate viral RNA translation or RNA replication but instead affects a later stage of the viral lifecycle. We identified novel interactions between UFL1, and several viral proteins involved in orthoflavivirus virion assembly, including NS2A, NS2B-NS3, and Capsid. These findings establish UFMylation as a previously unrecognized post-translational modification system that promotes orthoflavivirus infection, likely through modulation of viral assembly. This work expands our understanding of the post-translational modifications that control orthoflavivirus infection and identifies new potential therapeutic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。