Exposure to the Pseudomonas aeruginosa secretome alters the proteome and secondary metabolite production of Aspergillus fumigatus

暴露于铜绿假单胞菌分泌组会改变烟曲霉的蛋白质组和次级代谢产物

阅读:5
作者:Anatte Margalit, David Sheehan, James C Carolan, Kevin Kavanagh

Abstract

The fungal pathogen Aspergillus fumigatus is frequently cultured from the sputum of cystic fibrosis (CF) patients along with the bacterium Pseudomonas aeruginosa. A. fumigatus secretes a range of secondary metabolites, and one of these, gliotoxin, has inhibitory effects on the host immune response. The effect of P. aeruginosa culture filtrate (CuF) on fungal growth and gliotoxin production was investigated. Exposure of A. fumigatus hyphae to P. aeruginosa cells induced increased production of gliotoxin and a decrease in fungal growth. In contrast, exposure of A. fumigatus hyphae to P. aeruginosa CuF led to increased growth and decreased gliotoxin production. Quantitative proteomic analysis was used to characterize the proteomic response of A. fumigatus upon exposure to P. aeruginosa CuF. Changes in the profile of proteins involved in secondary metabolite biosynthesis (e.g. gliotoxin, fumagillin, pseurotin A), and changes to the abundance of proteins involved in oxidative stress (e.g. formate dehydrogenase) and detoxification (e.g. thioredoxin reductase) were observed, indicating that the bacterial secretome had a profound effect on the fungal proteome. Alterations in the abundance of proteins involved in detoxification and oxidative stress highlight the ability of A. fumigatus to differentially regulate protein synthesis in response to environmental stresses imposed by competitors such as P. aeruginosa. Such responses may ultimately have serious detrimental effects on the host.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。