A High Performance Polyacrylonitrile Composite Separator with Cellulose Acetate and Nano-Hydroxyapatite for Lithium-Ion Batteries

用于锂离子电池的高性能聚丙烯腈醋酸纤维素和纳米羟基磷灰石复合隔膜

阅读:10
作者:Weiping Chen, Xiang Wang, Jianyu Liang, Yao Chen, Wei Ma, Siyuan Zhang

Abstract

The traditional commercial polyolefin separators suffer from high-temperature thermal shrinkage, low electrolyte wettability and other issues. In order to improve the overall performance of the separators, electrostatic spinning technology was applied to obtain PAN nanofiber separators with an average diameter of 320 nm. Then cellulose acetate (CA) resin and nano-hydroxyapatite (HAP) were introduced to fabricate the PAN/CA/HAP composite separators through the constant temperature hot pressing and dip-coating crafts. The composite separator has a good thermal stability, with no significant dimensional change after a constant temperature treatment of 200 °C for 35 min. The electrolyte uptake rate of the PAN/CA/HAP-1.0 composite separator reaches 281%, which exhibits an efficient ionic conductivity. At the same time, it also attains a tensile strength of 11.18 MPa, which meets the requirement for separator use. Button cells assembled from PAN/CA/HAP-1.0 composite separators have an excellent rate of performance (160.42 mAh·g-1 at 0.2 C) and cycle capability (157.6 mAh·g-1 after 50 cycles at 0.5 C). The results support that lithium-ion batteries assembled with PAN/CA/HAP-1.0 composite separators will exhibit higher safety stability and better electrochemical performance than that of polyolefin separators, with a very immense potential for application.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。