Precise tuning of the glyoxylate cycle in Escherichia coli for efficient tyrosine production from acetate

精确调节大肠杆菌中的乙醛酸循环,以高效地从乙酸盐中生产酪氨酸

阅读:7
作者:Minji Jo, Myung Hyun Noh, Hyun Gyu Lim, Chae Won Kang, Dae-Kyun Im, Min-Kyu Oh, Gyoo Yeol Jung

Background

Acetate is one of promising feedstocks owing to its cheap price and great abundance. Considering that tyrosine production is gradually shifting to microbial production method, its production from acetate can be attempted to further improve the economic feasibility of its production.

Conclusions

Tyrosine production from acetate requires precise tuning of the glyoxylate cycle and we obtained substantial improvements in production titer and yield by synthetic promoters and 5' untranslated regions (UTRs). This is the first demonstration of tyrosine production from acetate. Our strategies would be widely applicable to the production of various chemicals from acetate in future.

Results

Here, we engineered a previously reported strain, SCK1, for efficient production of tyrosine from acetate. Initially, the acetate uptake and gluconeogenic pathway were amplified to maximize the flux toward tyrosine. As flux distribution between glyoxylate and TCA cycles is critical for efficient precursor supplementation, the activity of the glyoxylate cycle was precisely controlled by expression of isocitrate lyase gene under different-strength promoters. Consequently, the engineered strain with optimal flux distribution produced 0.70 g/L tyrosine with 20% of the theoretical maximum yield which are 1.6-fold and 1.9-fold increased values of the parental strain. Conclusions: Tyrosine production from acetate requires precise tuning of the glyoxylate cycle and we obtained substantial improvements in production titer and yield by synthetic promoters and 5' untranslated regions (UTRs). This is the first demonstration of tyrosine production from acetate. Our strategies would be widely applicable to the production of various chemicals from acetate in future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。