LPS stimulation during HCV infection induces MMP/TIMP1 imbalance in macrophages

HCV 感染期间的 LPS 刺激导致巨噬细胞中 MMP/TIMP1 失衡

阅读:8
作者:Chao Fan, Xiaoxiao Zhang, Peixin Zhang, Jieru Zhao, Huanjun Shen, Ying Zhang, Xingan Wu, Zhansheng Jia, Yili Wang

Abstract

Introduction. During chronic hepatitis C virus (HCV) infections, HCV antigens establish cross-tolerance of endotoxins, but additional lipopolysaccharide (LPS) stimulation effects in this condition are poorly understood.Aim. This study aims to investigate the effects of the upregulated LPS on MMP and TIMP expression during chronic hepatitis C infection.Methodology. In the present study, we analysed the effect of HCV antigens and LPS stimulation on peripheral blood mononuclear cells (PBMCs) both in vivo and in vitro. Macrophages from HCV patients were isolated and their association with endotoxin tolerance was examined. MMP/TIMP1 expression and the related signalling pathways in macrophages were analysed. The macrophage and Huh7.5 cell co-culture model was used to analyse the effects of the cross-tolerance on collagen I deposition.Results. LPS levels were found to be significantly higher in HCV patients, particularly in those with HCV-induced liver fibrosis. In addition, although LPS serum level was occasionally upregulated in the patients, it did not induce intense immune response in PBMCs due to endotoxin cross-tolerance, and this was measured according to the changes in IL-6 and TNF-α levels. However, TIMP1 expression increased significantly during stimulation, exhibiting a tolerance/resistance phenotype, which was associated with TGF-β/Erk activation in macrophages. However, MMP levels did not increase due to endotoxin tolerance, which ultimately led to MMP/TIMP imbalance and influenced the deposition of collagen I.Conclusion. Increased LPS stimulation of macrophage during HCV antigen-induced endotoxin cross-tolerance contributes to MMP/TIMP1 imbalance and collagen I deposition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。