Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis

成骨细胞谱系中脑膜蛋白的缺失影响骨细胞-破骨细胞之间的相互作用,导致骨质疏松症

阅读:4
作者:Peng Liu, Sooyeon Lee, Jeanette Knoll, Alexander Rauch, Susanne Ostermay, Julia Luther, Nicole Malkusch, Ulf H Lerner, Mario M Zaiss, Mona Neven, Rainer Wittig, Martina Rauner, Jean-Pierre David, Philippe Bertolino, Chang X Zhang, Jan P Tuckermann

Abstract

During osteoporosis bone formation by osteoblasts is reduced and/or bone resorption by osteoclasts is enhanced. Currently, only a few factors have been identified in the regulation of bone integrity by osteoblast-derived osteocytes. In this study, we show that specific disruption of menin, encoded by multiple endocrine neoplasia type 1 (Men1), in osteoblasts and osteocytes caused osteoporosis despite the preservation of osteoblast differentiation and the bone formation rate. Instead, an increase in osteoclast numbers and bone resorption was detected that persisted even when the deletion of Men1 was restricted to osteocytes. We demonstrate that isolated Men1-deficient osteocytes expressed numerous soluble mediators, such as C-X-C motif chemokine 10 (CXCL10), and that CXCL10-mediated osteoclastogenesis was reduced by CXCL10-neutralizing antibodies. Collectively, our data reveal a novel role for Men1 in osteocyte-osteoclast crosstalk by controlling osteoclastogenesis through the action of soluble factors. A role for Men1 in maintaining bone integrity and thereby preventing osteoporosis is proposed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。