Counter Anion Type Influences the Glass Transition Temperature of Polyelectrolyte Complexes

反阴离子类型影响聚电解质复合物的玻璃化转变温度

阅读:10
作者:Suvesh Manoj Lalwani, Kayla Hellikson, Piotr Batys, Jodie L Lutkenhaus

Abstract

Salt acts as a plasticizer in polyelectrolyte complexes (PECs), which impacts the physical, thermal, and mechanical properties, thus having implications in applications, such as drug delivery, energy storage, and smart coatings. Added salt disrupts polycation-polyanion intrinsic ion pairs, lowering a hydrated PEC's glass transition temperature (Tg). However, the relative influence of counterion type on the PEC's Tg is not well understood. Here, the effect of anion type (NaCl, NaBr, NaNO3, and NaI) on the Tg of solid-like, hydrated PECs composed of poly(diallydimethylammonium) (PDADMA)-poly(styrenesulfonate) (PSS) is investigated. With increasing the chaotropic nature of the salt anion, the Tg decreases. The relative differences are attributed to the doping level, the amount of bound water, the mobility of water molecules within the PECs, and the strength of interactions between the PEs. For all studied salt concentrations and salt types, the Tg followed the scaling of -1/Tg ≈ ln([IP]/[H2O]), in which [IP]/[H2O] is the ratio of intrinsic pairs to water. The scaling estimates that about 7 to 17% of the intrinsic ion pairs should be weakened for the PEC to partake in a glass transition. Put together, this study highlights that the Tg in PECs is impacted by the salt anion, but the mechanism of the glass transition remains unchanged.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。