Pericyte-derived extracellular vesicles improve vascular barrier function in sepsis via the Angpt1/PI3K/AKT pathway and pericyte recruitment: an in vivo and in vitro study

周细胞衍生的细胞外囊泡通过 Angpt1/PI3K/AKT 通路和周细胞募集改善脓毒症中的血管屏障功能:一项体内和体外研究

阅读:5
作者:Zi-Sen Zhang #, Ao Yang #, Xi Luo #, He-Nan Zhou, Yi-Yan Liu, Dai-Qin Bao, Jie Zhang, Jia-Tao Zang, Qing-Hui Li, Tao Li #, Liang-Ming Liu #

Background

Extracellular vesicles derived from pericytes (PCEVs) have been shown to improve vascular permeability, with their therapeutic effects attributed to the presence of pro-regenerative molecules. We hypothesized that angiopoietin 1 (Angpt1) carried by PCEVs contributes to their therapeutic effects after sepsis.

Conclusion

PCEVs protect against sepsis by regulating the vascular endothelial barrier, promoting PC recruitment, protecting intestinal function, and restoring properties via activation of the Angpt1/PI3K/AKT pathway.

Methods

A cecal ligation and puncture (CLP)-induced sepsis rat model was used in vivo, and the effects of PCEVs on vascular endothelial cells were studied in vitro. First, proteomic and Gene Ontology enrichment analyses were performed to analyze the therapeutic mechanism of PCEVs, revealing that the angiogenesis-related protein Angpt1 was highly expressed in PCEVs. We then down-regulated Angpt1 in PCEVs. The role of PCEV-carried Angpt1 on intestinal barrier function, PCs recruitment, and inflammatory cytokines was measured by using septic Sprague-Dawley rats and platelet-derived growth factor receptor beta (PDGFR-β)-Cre + mT/mG transgenic mice.

Results

PCEVs significantly improved vascular permeability, proliferation, and angiogenesis in CLP-induced gut barrier injury both in vivo and in vitro. Further studies have shown that PCEVs exert a protective effect on intestinal barrier function and PC recruitment. Additionally, PCEVs reduced serum inflammatory factor levels. Our data also demonstrated that the protein levels of phospho-PI3K and phospho-Akt both increased after PCEVs administration, whereas knocking out Angpt1 suppressed the protective effects of PCEVs through decreased activation of PI3K/Akt signaling.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。