Influence of Thermal Annealing on the Sinterability of Different Grades of Polylactide Microspheres Dedicated for Laser Sintering

热退火对不同等级激光烧结专用聚乳酸微球烧结性能的影响

阅读:3
作者:Małgorzata Gazińska, Anna Krokos, Bartłomiej Kryszak, Paulina Dzienny, Michał Olejarczyk, Piotr Gruber, Ryszard Kwiatkowski, Arkadiusz Antończak

Abstract

We present a comparison of the influence of the conditioning temperature of microspheres made of medical grade poly(L-lactide) (PLLA) and polylactide with 4 wt % of D-lactide content (PLA) on the thermal and structural properties. The microspheres were fabricated using the solid-in-oil-in-water method for applications in additive manufacturing. The microspheres were annealed below the glass transition temperature (Tg), above Tg but below the onset of cold crystallization, and at two temperatures selected from the range of cold crystallization corresponding to the crystallization of the α' and α form of poly(L-lactide), i.e., at 40, 70, 90, and 120 °C, in order to verify the influence of the conditioning temperature on the sinterability of the microspheres set as the sintering window (SW). Based on differential scanning calorimetry measurements, the SWs of the microspheres were evaluated with consideration of the existence of cold crystallization and reorganization of crystal polymorphs. The results indicated that the conditioning temperature influenced the availability and range of the SWs depending on the D-lactide presence. We postulate the need for an individual approach for polylactide powders in determining the SW as a temperature range free of any thermal events. We also characterized other core powder characteristics, such as the residual solvent content, morphology, particle size distribution, powder flowability, and thermal conductivity, as key properties for successful laser sintering. The microspheres were close to spheres, and the size of the microspheres was below 100 µm. The residual solvent content decreased with the increase of the annealing temperature. The thermal conductivities were 0.073 and 0.064 W/mK for PLA and PLLA microspheres, respectively, and this depended on the spherical shape of the microspheres. The wide angle X-ray diffraction (WAXD) studies proved that an increase in the conditioning temperature caused a slight increase in the crystallinity degree for PLLA microspheres and a clear increase in crystallization for the PLA microspheres.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。