Melatonin-pretreated mesenchymal stem cell-derived exosomes alleviate cavernous fibrosis in a rat model of nerve injury-induced erectile dysfunction via miR-145-5p/TGF-β/Smad axis

褪黑素预处理的间充质干细胞衍生的外泌体通过 miR-145-5p/TGF-β/Smad 轴缓解神经损伤诱发勃起功能障碍大鼠模型中的海绵体纤维化

阅读:4
作者:Xiaolin Zhang #, Mengbo Yang #, Xinda Chen, Ming Zhang, Yiliang Peng, Mujun Lu

Background

Cavernous nerve injury-induced erectile dysfunction (CNI-ED) is a common complication after radical prostatectomy. Conventional treatment approaches have had little success in treating the severe cavernous fibrosis which is a consequence of CNI-ED.

Conclusions

MT-hASCs-EVs can inhibit cavernous fibrosis and improve erectile function in a rat model of CNI-ED by targeting the miR-145-5p/TGF-β/Smad axis.

Methods

Pre-treatment of adipose-derived stem cells with melatonin allows for the extraction of active exosomes (MT-hASC-EVs) from the conditioned medium. The therapeutic effects of MT-hASC-EVs were assessed in a rat model of CNI-ED, and the anti-fibrotic properties were evaluated. MicroRNA sequencing was used to identify specific microRNAs highly expressed in MT-hASC-EVs, and differential microRNAs were screened for regulatory pathways through target gene enrichment analysis. Finally, the conclusions from bioinformatics analysis were validated through in vitro experiments.

Results

Intracavernous injection of MT-hASC-EVs significantly restored erectile function and reduced the extent of corpus cavernosum fibrosis in the CNI-ED rat model. MT-hASC-EVs promoted the proliferation and anti-apoptotic effects of corpus cavernosum smooth muscle cells (CCSMCs) in vitro. Mechanistically, MT-hASC-EVs inhibit fibrosis by delivering miR-145-5p, which targets TGF-β2/Smad3 axis. Conclusions: MT-hASCs-EVs can inhibit cavernous fibrosis and improve erectile function in a rat model of CNI-ED by targeting the miR-145-5p/TGF-β/Smad axis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。