Impact of Human Recombinant Irisin on Tissue-Engineered Skeletal Muscle Structure and Function

人重组鸢尾素对组织工程骨骼肌结构和功能的影响

阅读:24
作者:Matthew H Nguyen, Christopher S Kennedy, Olga M Wroblewski, Eileen Su, Derek H Hwang, Lisa M Larkin

Abstract

Tissue engineering of exogenous skeletal muscle units (SMUs) through isolation of muscle satellite cells from muscle biopsies is a potential treatment method for acute volumetric muscle loss (VML). A current issue with this treatment process is the limited capacity for muscle stem cell (satellite cell) expansion in cell culture, resulting in a decreased ability to obtain enough cells to fabricate SMUs of appropriate size and structural quality and that produce native levels of contractile force. This study determined the impact of human recombinant irisin on the growth and development of three-dimensional (3D) engineered skeletal muscle. Muscle satellite cells were cultured without irisin (control) or with 50, 100, or 250 ng/mL of irisin supplementation. Light microscopy was used to analyze myotube formation with particular focus placed on the diameter and density of the monotubes during growth of the 3D SMU. Following the formation of 3D constructs, SMUs underwent measurement of maximum tetanic force to analyze contractile function, as well as immunohistochemical staining, to characterize muscle structure. The results indicate that irisin supplementation with 250 ng/mL significantly increased the average diameter of myotubes and increased the proliferation and differentiation of myoblasts in culture but did not have a consistent significant impact on force production. In conclusion, supplementation with 250 ng/mL of human recombinant irisin promotes the proliferation and differentiation of myotubes and has the potential for impacting contractile force production in scaffold-free tissue-engineered skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。