Background
The
Conclusions
AAA-SMCs have a unique gene expression profile and a proelastolytic phenotype that is augmented by macrophages. This may occur by a failure of post-transcriptional control of MMP-9 synthesis.
Methods
Whole-genome expression profiles of SMCs from AAAs, nondilated abdominal aorta (NAA), and carotid endarterectomy (CEA) were compared. We quantified elastolytic activity by culturing SMCs in [(3)H]elastin-coated plates and measuring solubilized tritium in the media after 7 days. Matrix metalloproteinase (MMP)-2 and MMP-9 production was assessed using real-time polymerase chain reaction, zymography, and Western blotting.
Results
Each SMC type exhibited a unique gene expression pattern. AAA SMCs had greater elastolytic activity than NAA-SMCs (+68%; P < .001) and CEA-SMCs (+45%; P < .001). Zymography showed an increase of active MMP-2 (62 kD) in media from AAA SMCs. AAA SMCs demonstrated twofold greater expression of MMP-2 messenger (m)RNA (P < .05) and 7.3-fold greater MMP-9 expression (P < .01) than NAA-SMCs. Culture with U937 monocytes caused a synergistic increase of elastolysis by AAA SMCs (41%; P < .001) but not NAA-SMCs or CEA-SMCs (P = .99). Coculture with U937 caused a large increase in MMP-9 mRNA in AAA-SMCs and NAA-SMCs (P < .001). MMP-2 mRNA expression was not affected. Western blots of culture media showed a fourfold increase of MMP-9 (92 kD) protein only in AAA-SMCs/U937 but not in NAA-SMCs/U937 (P < .001) and a large increase in active-MMP2 (62 kD), which was less apparent in NAA-SMCs/U937 media (P < .01). Conclusions: AAA-SMCs have a unique gene expression profile and a proelastolytic phenotype that is augmented by macrophages. This may occur by a failure of post-transcriptional control of MMP-9 synthesis.
