Forecasting and control of lactate bifurcation in Chinese hamster ovary cell culture processes

中国仓鼠卵巢细胞培养过程中乳酸分叉的预测与控制

阅读:7
作者:John Schmitt, Brandon Downey, Justin Beller, Brian Russell, Anthony Quach, David Lyon, Meredith Curran, Bhanu Chandra Mulukutla, Chia Chu

Abstract

Biomanufacturing exhibits inherent variability that can lead to variation in performance attributes and batch failure. To help ensure process consistency and product quality the development of predictive models and integrated control strategies is a promising approach. In this study, a feedback controller was developed to limit excessive lactate production, a widespread metabolic phenomenon that is negatively associated with culture performance and product quality. The controller was developed by applying machine learning strategies to historical process development data, resulting in a forecast model that could identify whether a run would result in lactate consumption or accumulation. In addition, this exercise identified a correlation between increased amino acid consumption and low observed lactate production leading to the mechanistic hypothesis that there is a deficiency in the link between glycolysis and the tricarboxylic acid cycle. Using the correlative process parameters to build mechanistic insight and applying this to predictive models of lactate concentration, a dynamic model predictive controller (MPC) for lactate was designed. This MPC was implemented experimentally on a process known to exhibit high lactate accumulation and successfully drove the cell cultures towards a lactate consuming state. In addition, an increase in specific titer productivity was observed when compared with non-MPC controlled reactors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。