Amnion membranes support wound granulation in a delayed murine excisional wound model

羊膜支持小鼠延迟切除伤口模型中的伤口肉芽形成

阅读:6
作者:David Dolivo, Ping Xie, Lauren Sun, Chun Hou, Abigail Phipps, Thomas A Mustoe, Seok Jong Hong, Robert D Galiano

Abstract

Chronic or delayed healing wounds constitute an ever-increasing burden on healthcare providers and patients alike. Thus, therapeutic modalities that are tailored to particular deficiencies in the delayed wound healing response are of critical importance to improve clinical outcomes. Human amnion-derived viable and devitalized allografts have demonstrated clinical efficacy in promoting the closure of delayed healing wounds, but the mechanisms responsible for this efficacy and the specific wound healing processes modulated by these tissues are not fully understood. Here, we utilized a diabetic murine excisional wound model in which healing is driven by granulation and re-epithelialization, and we applied viable (vHAMA) or devitalized (dHAMA) amnion-derived allografts to the wound bed in order to determine their effects on wound healing processes. Compared to control wounds that were allowed to heal in the absence of treatment, wounds to which vHAMA or dHAMA were applied demonstrated enhanced deposition of granulation tissue accompanied by increased cellular proliferation and increased de novo angiogenesis, while vHAMA-treated wounds also demonstrated accelerated re-epithelialization. Taken together, these data suggest that both vHAMA and dHAMA facilitate wound healing through promoting processes critical to granulation tissue formation. Further understanding of the cellular and tissue mechanisms underlying the effects of tissue-derived matrices on wound healing will enable tailored prescription of their use in order to maximize clinical benefit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。